
VCI: .NET-API
Software Version 4

SOFTWARE DESIGN GUIDE
4.02.0250.20021 1.3 en-US ENGLISH

Important User Information
Disclaimer
The information in this document is for informational purposes only. Please inform HMS Industrial Networks of any
inaccuracies or omissions found in this document. HMS Industrial Networks disclaims any responsibility or liability
for any errors that may appear in this document.

HMS Industrial Networks reserves the right to modify its products in line with its policy of continuous product
development. The information in this document shall therefore not be construed as a commitment on the part of
HMS Industrial Networks and is subject to change without notice. HMS Industrial Networks makes no commitment
to update or keep current the information in this document.

The data, examples and illustrations found in this document are included for illustrative purposes and are only
intended to help improve understanding of the functionality and handling of the product. In view of the wide range
of possible applications of the product, and because of the many variables and requirements associated with any
particular implementation, HMS Industrial Networks cannot assume responsibility or liability for actual use based on
the data, examples or illustrations included in this document nor for any damages incurred during installation of the
product. Those responsible for the use of the product must acquire sufficient knowledge in order to ensure that the
product is used correctly in their specific application and that the application meets all performance and safety
requirements including any applicable laws, regulations, codes and standards. Further, HMS Industrial Networks will
under no circumstances assume liability or responsibility for any problems that may arise as a result from the use of
undocumented features or functional side effects found outside the documented scope of the product. The effects
caused by any direct or indirect use of such aspects of the product are undefined and may include e.g. compatibility
issues and stability issues.

VCI: .NET-API Software Design Guide 4.02.0250.20021 1.3 en-US

VCI: .NET-API Software Design Guide 4.02.0250.20021 1.3 en-US

Table of Contents Page

1 User Guide ... 3
1.1 Related Documents ..3

1.2 Document History ..3

1.3 Trademark Information ...3

1.4 Conventions..4

1.5 Glossary ...5

2 System Overview... 6
2.1 Components of the VCI V4 .NET Adapter ..7

2.2 Legacy Interfaces ...8
2.2.1 VCI V3 8

2.2.2 VCI V2 8

2.3 Sub-Components and .NET Interfaces/Classes ...9

2.4 Programming Examples...9

3 Including the .NET API... 10
3.1 Including Manually into Own Projects .. 10

3.2 Including into Own Projects via NuGet ... 10

3.3 Porting the Applications .. 10

4 Device Management and Device Access.. 12
4.1 Listing Available Devices.. 13

4.2 Accessing Individual Devices .. 14

5 Communication Components ... 15
5.1 First In/First Out Memory (FIFO) ... 15

5.1.1 Functionality of the Receiving FIFO ... 18

5.1.2 Functionality of the Transmitting FIFO 19

6 Accessing the Bus Controller .. 21
6.1 CAN Controller .. 23

6.1.1 Socket Interface... .. 24

6.1.2 Message Channels .. 24

6.1.3 Control Unit . 31

6.1.4 Message Filter... 34

6.1.5 Cyclic Transmitting List. . .. 39

6.2 LIN-Controller.. 42
6.2.1 Socket Interface... .. 43

6.2.2 Message Monitors 43

6.2.3 Control Unit . 46

VCI: .NET-API Software Design Guide 4.02.0250.20021 1.3 en-US

7 Interface Description... 50

User Guide 3 (52)

1 User Guide
Please read the manual carefully. Make sure you fully understand the manual before using the
product.

1.1 Related Documents
Document Author
VCI: C++ Software Version 4 Software Design Guide HMS

1.2 Document History
Version Date Description

1.0 July 2016 First release

1.1 January 2018 Added information to chapter 3.2 Including into Own Projects via NuGet and
path to examples, adjusted system overview

1.2 September 2018 Corrections in chapter Creating a Message Channel, added information about
time stamp of receive messages

1.3 May 2019 Layout changes

1.3 Trademark Information
Ixxat® is a registered trademark of HMS Industrial Networks. All other trademarks mentioned in
this document are the property of their respective holders.

VCI: .NET-API Software Design Guide 4.02.0250.20021 1.3 en-US

User Guide 4 (52)

1.4 Conventions
Instructions and results are structured as follows:

► instruction 1

► instruction 2

→ result 1

→ result 2

Lists are structured as follows:

• item 1

• item 2

Bold typeface indicates interactive parts such as connectors and switches on the hardware, or
menus and buttons in a graphical user interface.

This font is used to indicate program code and other
kinds of data input/output such as configuration scripts.

This is a cross-reference within this document: Conventions, p. 4

This is an external link (URL): www.hms-networks.com

This is additional information which may facilitate installation and/or operation.

This instruction must be followed to avoid a risk of reduced functionality and/or damage
to the equipment, or to avoid a network security risk.

VCI: .NET-API Software Design Guide 4.02.0250.20021 1.3 en-US

http://www.hms-networks.com

User Guide 5 (52)

1.5 Glossary

Abbreviations

VCI Virtual Communication Interface

VCI server VCI system service

FIFO First In/First Out Memory

BAL Bus Access Layer

VCIID system-wide unique ID of a device

GUID Unique ID of device class

API Application Programming Interface

VCI: .NET-API Software Design Guide 4.02.0250.20021 1.3 en-US

System Overview 6 (52)

2 System Overview
The VCI (Virtual Communication Interface) is a driver that provides common access to the
different devices by HMS Industrial Networks for applications.

The VCI .Net adapter is based on the VCI, that provides an interface based C++ API. In this guide
the .NET programming interface Ixxat.Vci4.dll is described.

Fig. 1 System components

VCI: .NET-API Software Design Guide 4.02.0250.20021 1.3 en-US

System Overview 7 (52)

2.1 Components of the VCI V4 .NET Adapter
The VCI .NET adapter contains a set of .NET assemblies for .NET 3.5 and for .NET 4.0 and higher,
that are located in the corresponding subdirectories NET35 and NET40. If included via NuGet the
correct version is copied to the project directory. Except for the dependencies to corresponding
system assemblies, the assemblies have the same functionality. The adapter works on top of
VCI3 and VCI4 installations.

Fig. 2 VCI3 .NET adapter

• Ixxat.Vci4.Contract.dll: contains basic class and interface declarations, defines the interface
(contract) between VCI .NET adapter and application.

• Ixxat.Vci4.dll: contains the minimal loader, which loads depending on the processor
architecture in use the corresponding native component (vcinet.x86.dll or vcinet.x64.dll).
Simplifies the deployment of applications, that are compiled independently of the
architecture (AnyCPU).

• vcinet.x86.dll: native component for x86 systems

• vcinet.x64.dll: native component for x64 systems

Differences to VCI .NET API Version 3:

• simplifies the deployment and reduces dependencies between various interfaces, since
there is no installation within GAC

• different declarations due to the moving of the interfaces in Ixxat.Vci4.Contract.dll and the
implementation of the loader Ixxat.Vci4.dll

• additional interfaces ICanChannel2, ICanSocket2, ICanScheduler2,
ICanMessage2 and value types CanBitrate2, CanFdBitrate and CanLineStatus2 for CAN FD
support

.NET API native
(vcinet.x86.dll)

.NET API loader
(Ixxat.Vci4.dll)

CAN / CAN-FD/ LIN
C++ API

(vciApi.dll)

CAN / CAN-FD/ LIN
C++ API

(vciApi.dll)User Mode

.NET API native
(vcinet.x64.dll)

.NET API contract
(Ixxat.Vci4.Contract.dll)

NET35
Application

NET35
Application

.NET API native
(vcinet.x86.dll)

.NET API loader
(Ixxat.Vci4.dll)

.NET API native
(vcinet.x64.dll)

.NET API contract
(Ixxat.Vci4.Contract.dll)

NET40
Application

NET40
Application

VCI: .NET-API Software Design Guide 4.02.0250.20021 1.3 en-US

System Overview 8 (52)

2.2 Legacy Interfaces
2.2.1 VCI V3

Fig. 3 VCI V3 interfaces

Due to compatibility reasons the interfaces used with VCI V3 are also installed with the VCI V4.
HMS Industrial Networks recommends using only the VCI .NET API version 4 for new
developments. If the integrated VCI V3 adapter is used for existing VCI V3 applications see
chapter Porting the Applications, p. 10 for further information.

2.2.2 VCI V2
To use an existing VCI V2 based application with the VCI V4 the VCI V2 adapter must be installed.
For further information observe the ReadMe file in the VCI V2 installation folder.

Fig. 4 VCI V2 adapter

.NET20 API native
32bit

(vcinet2.dll)

CAN / CAN-FD/ LIN
C++ API

(vciApi.dll)

CAN / CAN-FD/ LIN
C++ API

(vciApi.dll)User Mode

.NET20 API native
64bit

(vcinet2.dll)

NET20
Application 32bit

NET20
Application 32bit

.NET40 API native
32bit

(vcinet4.dll)

.NET40 API native
64bit

(vcinet4.dll)

NET40
Application 32bit

NET40
Application 32bit

NET20
Application 64bit

NET20
Application 64bit

NET40
Application 64bit

NET40
Application 64bit

CAN / CAN-FD/ LIN
C++ API

(vciApi.dll)

CAN / CAN-FD/ LIN
C++ API

(vciApi.dll)User Mode

VCI2 Adapter DLL
(vci11un6.dll)

VCI2 DeviceEnum
Adapter DLL
(xat11reg.dll)

VCI2 ApplicationVCI2 Application VCI2 VB6 ApplicationVCI2 VB6 Application

VCI2 COM Wrapper (vciwrapper.dll)

VCI: .NET-API Software Design Guide 4.02.0250.20021 1.3 en-US

System Overview 9 (52)

2.3 Sub-Components and .NET Interfaces/Classes
Entry point

Device management and
device access

Bus access

CAN control

CAN message channels

Cyclic transmitting list

LIN control

LIN message monitor

2.4 Programming Examples
With installing the VCI driver, programming examples are automatically installed in c:\Users
\Public\Documents\HMS\Ixxat VCI 4.0\Samples\dotnet.

VciServer IVciServer

Device
Manager IDisposable

IVciDeviceManager

Device List IDisposable

IVciDeviceList
Device
Object IDisposable

IVciDeviceList

Bus Access
Layer IDisposable

IBalObject

Bus Access
Layer

Resource IDisposable

IBalResource BalResource
Collection

CAN Control

IDisposable

ICanControl

ICanSocket

IBalResource

CAN
Channel

IDisposable

ICanChannel

ICanSocket

IBalResource

CAN
Message
Reader

IDisposable

ICanMessageReader

CAN
Message

Writer
IDisposable

ICanMessageWriter

CAN
Scheduler

IDisposable

ICanScheduler

ICanSocket

IBalResource

LIN Control

IDisposable

ILinControl

ILinSocket

IBalResource

LIN
Monitor

IDisposable

ILinChannel

ILinSocket

IBalResource

LIN
Message
Reader IDisposable

ILinMessageReader

VCI: .NET-API Software Design Guide 4.02.0250.20021 1.3 en-US

Including the .NET API 10 (52)

3 Including the .NET API
3.1 Including Manually into Own Projects

► Add the dependencies to the project.

Ixxat.Vci4.Contact.dll and the loader Ixxat.Vci4.dll are necessary.

► Copy the native components (vcinet.x86.dll and vcinet.x64.dll) to the bin directory.

3.2 Including into Own Projects via NuGet
The including via NuGet automates the steps that are necessary when including manually. Via
NuGet the strongly named package Ixxat.Vci4StrongName and the package without assigned
strong name Ixxat.Vci4 are available.

► Install the package Ixxat.Vci4StrongName for the project.

► Observe further information in manuals (in package Ixxat.Vci4.Manuals) and on
www.nuget.org.

Using Older VisualStudio Versions (VS2012 and earlier)

A bug in older VisualStudio versions (VS2012 and earlier) sometimes drops the copy task during a
build, which copies the native components to the bin directory (vcinet.x86.dll and vcinet.x64.dll).

► Use the batch build command as a workaround.

► If exceptions are thrown during the startup, check the exception text for hints and check if
all required components are deployed to the output directory.

3.3 Porting the Applications
The VCIAPI.DLL of the VCI 4 is compatible to the VCI 3. When installing the VCI.NET API Version 4,
Version 3 is also installed.

To port the applications of the VCI 3 .NET API to the current VCI 4 .NET adapter, the following
sources are changed:

• using statements

• access to device manager

• use of CAN/LIN messages

• requesting the channel status

Using Statements

// Version3
using Ixxat.Vci3;
// Version4
using Ixxat.Vci4;

Access to Device Manager

// Version3
deviceManager = VciServer.GetDeviceManager();
// Version4
deviceManager = VciServer.Instance().DeviceManager;

VCI: .NET-API Software Design Guide 4.02.0250.20021 1.3 en-US

www.nuget.org

Including the .NET API 11 (52)

Use of CAN/LIN Messages (Transmit)

Because of the abstraction of messages via interfaces the use of a factory class is necessary:

// Version3
CanMessage canMsg = new CanMessage();
// Version4
IMessageFactory factory = VciServer.Instance().MsgFactory;
ICanMessage canMsg = (ICanMessage)factory.CreateMsg(typeof(ICanMessage));

Use of CAN/LIN Messages (Receive)

Exclusively the declaration is affected.

// Version3
CanMessage canMessage;
// Version4
ICanMessage canMessage;

Requesting the Channel Status

The change of the implementation of the LineStatus (to distinguish uninitialized statuses)
eventually makes adaptations of the access to this objects necessary.

VCI: .NET-API Software Design Guide 4.02.0250.20021 1.3 en-US

Device Management and Device Access 12 (52)

4 Device Management and Device Access
The device management provides listing of and access to devices logged into the VCI server.

Fig. 5 Device management components

The VCI server manages all devices in a system-wide global device list. When the computer is
booted or a connection between device and computer is established the device is automatically
logged into the server. If a device is no longer available for example because the connection is
interrupted, the device is automatically removed from the device list.

The logged in devices are accessed via the VCI device manager or its interface
IVciDeviceManager. The property VciServer.DeviceManager returns a reference to
this interface.

WaitFor...Event

Thread

Kernel Mode

User Mode

VCI 3 System Service (VCISRV.SYS)

PC-I04-PCI USB-to-CAN

Server Login Server Logoff

SetEvent

Device
Manager

IVciDeviceManager

Device List

IVciDeviceList

GetDeviceList()

Device
Enumerator

IEnumerator

GetEnumerator()

Device
Object

IVciDevice

Current

Device List

PC/I04-PCI

USB-to-CAN

VCI: .NET-API Software Design Guide 4.02.0250.20021 1.3 en-US

Device Management and Device Access 13 (52)

Main Device Information
Interface Type Description

Description String with description of
the interface

For example USB-to-CAN compact

VciObjectId Unique ID of device When a device logs in, it is allocated a system-wide
unique ID (VCIID). This ID is required for later access to
the device.

DeviceClass Device class All device drivers identify their supported device class
by a worldwide unique ID (GUID). Different devices
belong to different device classes, for example the
USB-to-CAN belongs to a different device class as PC-
I04/PCI.

UniqueHardwareId Hardware ID Each device has a unique hardware ID. The ID can be
used to differentiate between two interfaces or to
search for a device with a certain hardware ID.
Remains after restart of the system. Because of that it
can be stored in the configuration file and enables
automatic configuration of the application after
program and system start.

DriverVersion Version number of driver
HardwareVersion Version number of interface
Equipment Technical equipment of

interface
Included table of VciCtrlInfo structures provides
information about number and type of bus connections
present on the interface. Table entry 0 describes bus
connection 1, table entry 1 the bus connection 2 etc.

4.1 Listing Available Devices
► To access the global device list, call the method

IVciDeviceManager.GetDeviceList.

→ Returns pointer to the interface IVciDeviceList of the device list.

It is possible to monitor changes in the device list and to request enumerators for the device list.
There are different possibilities to navigate in the device list.

Requesting Enumerators

Method IVciDeviceList.GetEnumerator returns IEnumerator interface of a new
enumerator object for the device list.

► Call the method IEnumerator.Current.

→ Returns a new device object with information of the interface with each call.

► To access the information of the property Current of the standard interface
IEnumerator, convert the provided pure object reference to IVciDevice type.

► To increment the internal index, call the method IEnumerator.MoveNext.

→ IEnumerator.Current returns device object for the next interface.

The list is completely passed when the method IEnumerator.MoveNext returns the value
FALSE.

VCI: .NET-API Software Design Guide 4.02.0250.20021 1.3 en-US

Device Management and Device Access 14 (52)

Reset the Internal List Index

► Call the method IEnumerator.Reset.

→ The following call of the method IEnumerator.MoveNext returns again
information about the first device in the device list.

Devices that can be added or removed during operation, like for example USB devices are logged
in with connecting and logged off with disconnecting. The devices are also logged in or off when
the operation system activates or deactivates a device driver in the device manager.

Monitoring Changes in the Device List

► Create an AutoResetEvent object or a ManualResetEvent object.

► Assign the object to the list with IVciDeviceList.AssignEvent.

Use AutoResetEvent to set the event in signalized state, when a device logs in or off the VCI server
after calling the method.

4.2 Accessing Individual Devices
All Ixxat interfaces provide one or more components resp. access levels for various application
areas. Here the Bus Access Layer (BAL) is relevant. The BAL allows the control of the controller
and the communication with the fieldbus.

The different access levels of a Ixxat interface cannot be opened simultaneously. For example, if
an application opens the BAL, the access level used by CANopen master API can only be opened
again after the BAL is released or closed.

Certain access levels are additionally protected against multiple opening, for example two
CANopen applications cannot use one Ixxat interface simultaneously.

The BAL can be opened by several programs simultaneously, to allow different applications the
simultaneous access to different bus connections (further information see Accessing the Bus
Controller, p. 21).

VCI: .NET-API Software Design Guide 4.02.0250.20021 1.3 en-US

Communication Components 15 (52)

5 Communication Components
5.1 First In/First Out Memory (FIFO)

The VCI contains an implementation for First In/First Out memory objects.

FIFO Features

• Dual-port memory, in which data is written on the input side and read on the output side.

• Chronological sequence is preserved, i. e. data that is written in the FIFO at first is also read
at first.

• Similar to the functionality of a pipe connection and therefore also named pipe.

• Used to transfer data from a transmitter to the parallel receiver. Agreement with a lock
mechanism, that has access to the common memory area at a certain point of time is not
necessary.

• No locking, possible to be overcrowded, if receiver does not manage to read the data in
time.

• Transmitter writes the messages to transmit with writer interface in the FIFO. Receiver
parallel reads data with reader interface.

Fig. 6 FIFO data flow

Access

• Writing and reading access to a FIFO is possible simultaneously, a receiver is able to read
data while a transmitter writes new data to the FIFO.

• Simultaneous access of several transmitters resp. receivers to the FIFO is not possible.

• Multiple access to interfaces ICanMessageReader and ICanMessageWriter is
prevented, because the respective interface of the FIFO can only be opened once, i. e. not
until the interface is released with IDisposable.Dispose it can be opened again.

• To prevent simultaneous access to one interface by different threads of an application:

► Make sure, that the methods of an interface can only be called by one thread of the
application (e. g. create a separate message channel for the second thread).

or

► Synchronize the access to an interface with the respective thread: Call the method
Lock before every access of the FIFO and the method Unlock of the respective
interface after accessing.

Receiver

FIFO

ICanMessageReader

ICanMessageWriter

Dataflow

Transmitter

VCI: .NET-API Software Design Guide 4.02.0250.20021 1.3 en-US

Communication Components 16 (52)

Fig. 7 FIFO locking mechanism

Receiver 1 calls method Lock and gains access to the FIFO. The following call of Lock by
receiver 2 is blocked as long as receiver 1 releases the FIFO with calling method Unlock. Now
receiver 2 can start processing. In the same way two transmitters that access the FIFO with the
interface ICanMessageWriter can be synchronized.

FIFO Receiver2Receiver1

GetMessage(..)/
GetMessages(..)

Unlock()

GetMessage(..)/
GetMessages(..)

Unlock()

Lock()

Lock()

VCI: .NET-API Software Design Guide 4.02.0250.20021 1.3 en-US

Communication Components 17 (52)

The FIFOs provided by the VCI also allow the exchange of data between two processes, i. e. over
the boundaries of the process.

Fig. 8 FIFO for data exchange between two processes

FIFOs are also used to exchange data between components running in the kernel mode and
programs running in the user mode.

Fig. 9 Possible combination of a FIFO for data exchange between user and kernel mode

Process 1

Transmitter Receiver

Process 2

ICanMessageReaderICanMessageWriter

FIFO

Dataflow

Kernel Mode

ICanMessageReader

ICanMessageWriter

FIFO

Transmitter

Receiver

Dataflow

ICanMessageReader

ICanMessageWriter

FIFO

Transmitter

Receiver

DataflowUser Mode

VCI: .NET-API Software Design Guide 4.02.0250.20021 1.3 en-US

Communication Components 18 (52)

5.1.1 Functionality of the Receiving FIFO

Fig. 10 Functionality Receiving FIFO

At the receiving side FIFOs are addressed via the interface ICanMessageReader.

Access files to read:

► To read individual messages, call the method GetMessage.

or

► To read several messages, call the method GetMessages.

► To release on or more read and processed elements, call the method
IDisposable.Dispose.

Event Object

It is possible to assign an event object to the FIFO to prevent that the receiver has to ask if new
data is available for reading. The event object is set to a signaled status if a certain filling level is
reached.

► Create AutoResetEvent or ManualResetEvent.

→ Returned handle is assigned to the FIFO with method AssignEvent.

► Set the threshold resp. filling level that triggers the event with property Threshold.

Afterwards the application is able to wait for the event and to read the received data with one of
the methods WaitOne or WaitAll.

EventSetEvent

Filling Level >= Threshold

Receiver
Thread

WaitFor...

Transmitter

FIFO

ICanMessageWriter ICanMessageReader

VCI: .NET-API Software Design Guide 4.02.0250.20021 1.3 en-US

Communication Components 19 (52)

Fig. 11 Receiving sequence event-driven reading of data from the FIFO

Since the event is exclusively triggered with the exceedance of the set threshold, make sure that all
entries of the FIFO are read in case of event-driven reading. If the threshold is set for example 1 and
already 10 elements are in the FIFO when the event happens and only one is read, a following event will
not be triggered until the next write-access. If no further write-access follows by the transmitter 9
unread elements are in the FIFO that are not shown as event anymore.

5.1.2 Functionality of the Transmitting FIFO

Fig. 12 Functionality transmitting FIFO

At the transmitting side FIFOs are addressed via the interface ICanMessageWriter.

Write the data to be transmitted in the FIFO:

► To write individual messages to the FIFO, call the method WriteMessage.

or

► To write several messages to the FIFO, call the method WriteMessages.

Receiver FIFOEvent Transmitter

WriteMessage

SetEvent

ReadMessage

ReadMessage

WaitFor…(Event)

EventSetEvent

Free Entries >= Threshold

Transmitter
Thread

WaitFor...

Receiver

FIFO

ICanMessageReader ICanMessageWriter

VCI: .NET-API Software Design Guide 4.02.0250.20021 1.3 en-US

Communication Components 20 (52)

Event Object

It is possible to assign an event object to the FIFO to prevent that the receiver has to check if
free elements are available. The event object is set to a signaled status if the number of free
elements exceeds a certain value.

► Create AutoResetEvent or ManualResetEvent.

→ Returned handle is assigned to the FIFO with the method AssignEvent.

► Set the threshold resp. the number of free elements that trigger the event with property
Threshold.

Afterwards the application is able to wait for the event and to write new data in the FIFO with
one of the methods WaitOne or WaitAll.

Fig. 13 Transmitting sequence event-driven writing of data to FIFO

Transmitter FIFOEvent Receiver

SetEvent

WriteMessage

WriteMessage

ReadMessageWaitFor…(Event)

VCI: .NET-API Software Design Guide 4.02.0250.20021 1.3 en-US

Accessing the Bus Controller 21 (52)

6 Accessing the Bus Controller
Via the Bus Access Layer (BAL) the fieldbusses connected to the CAN interface are accessed.

Fig. 14 Components for accessing the bus

► Search the adapter in the device list and open the BAL with
IVciDeviceManager.OpenBusAccessLayer.

► After opening release the references to the device manager, device list, device enumerator
or device object that are no longer needed with IDisposable.Dispose.

For further work with the adapter only the BAL object resp. its interface IBalObject is
necessary. The BAL of an interface can be opened simultaneously by several programs.

The BAL object supports several types of bus connections.

Fig. 15 BAL with CAN and LIN controller

DeviceManager

VciServer.Instance()

Device
Manager

GetDeviceList()

Device List

GetEnumerator()

Device
Enumerator

MoveNext() / Current

Device
Object

OpenBusAccessLayer()

BAL
Object

IVciDeviceManager

IVciDeviceList

IEnumerator

IVciDevice

IBalObject

IDisposable

IDisposable

IDisposable

IDisposable

IDisposable

IBalObject

IUnknown

BAL

CAN
Controller

(Connection 1)

OpenSocket (0,..)

LIN
Controller

(Connection 2)

OpenSocket (1,...)

CAN Bus LIN Bus

VCI: .NET-API Software Design Guide 4.02.0250.20021 1.3 en-US

Accessing the Bus Controller 22 (52)

Determine Number and Type of Provided Connections

► Call the property IBalObject.Resources.

→ Returns information in form of a BalResourceCollection, that contains a BAL
resource object for every provided bus connection.

→ The BAL returns the version number of the device firmware via the property
IBalObject.FirmwareVersion.

Fig. 16 BalResourceCollection with two bus connections

Accessing the Connection or the Interface of the Connection

Access connections with the method IBalObject.OpenSocket.

► In the first parameter specify the number of the connection to be opened. The value has to
be in the range 0 to IBalObject.Resources.Count-1. To open connection 1 enter value 0, for
connection 2 value 1 etc.

► In the second parameter specify the ID of the interface to access the connection.

► Call method.

→ Returns reference to the requested interface.

→ Possibilities resp. interfaces of a connection are dependent on the supported bus.

Certain interfaces of a controller can only be accessed by one program, others can be accessed by any
number of programs simultaneously. The rules of accessing the particular interfaces are dependent on
the type of the connection and are described in detail in the following chapters.

BAL
Resource

Object

IBalResource

BAL
Resource

Object

IBalResource

BAL
Resource
Collection

VCI: .NET-API Software Design Guide 4.02.0250.20021 1.3 en-US

Accessing the Bus Controller 23 (52)

6.1 CAN Controller

Fig. 17 Components CAN controller

Access to individual components of the CAN controller via the following interfaces:

• ICanSocket, ICanSocket2 (CAN controller), see Socket Interface, p. 24

• ICanControl, ICanControl2 (control unit), see Control Unit, p. 31

• ICanChannel, ICanChannel2 (message channels), see Message Channels, p. 24

• ICanScheduler, ICanScheduler2 (cyclic transmitting list), see Cyclic Transmitting List,
p. 39, optional, exclusively with devices with their own microprocessor

The extended interfaces ICanSocket2, ICanControl2, ICanChannel2 and
ICanScheduler2 allow the access to the new functions of CAN FD controllers. With standard
controllers they can be used for further filter possibilities

CAN Adapter

OpenSocket(x, typeof(ICanControl))

OpenSocket(x, typeof(ICanScheduler))

OpenSocket(x, typeof(ICanSocket))

CAN Bus

OpenSocket(x, typeof(ICanChannel)) Message
Channel

ICanChannel
ICanSocket

IDisposable

IBalResource

CAN
Connection

ICanSocket

IDisposable

IBalResource

Control Unit

ICanControl
ICanSocket

IDisposable

IBalResource

Cyclic
Transmitting
List (optional)

ICanScheduler
ICanSocket

IDisposable

IBalResource

BAL IDisposable

IBalObject

VCI: .NET-API Software Design Guide 4.02.0250.20021 1.3 en-US

Accessing the Bus Controller 24 (52)

6.1.1 Socket Interface
The socket interface ICanSocket resp. ICanSocket2 is used to request features,
possibilities and the operating status of the CAN controller. The interface is not subjected to any
access restrictions and can be opened by multiple applications simultaneously. Controlling via
this interface is not possible.

Open with method IBalObject.OpenSocket.

► In parameter socketType enter the type ICanSocket or ICanSocket2.

► Call the method.

The properties of the CAN controller, like for example the supported features are provided via
properties.

► To determine the current operating status of the controller, call the property LineStatus.

6.1.2 Message Channels
Message channels consist of a receiving and an optional transmitting FIFO. One or more message
channels are possible per CAN controller. CAN messages are exclusively received and transmitted
via message channels.

Message channels with extended functionality (CAN FD) contain an additional, optional input
filter.

Fig. 18 Components and interfaces of a message channel

All CAN connections support message channels of the type ICanChannel and
ICanChannel2. If the extended functionality of a message channel of type ICanChannel2 is
usable, is depending on the CAN controller of the connection. If the connection provides for
example only a standard CAN controller, the extended functionality can not be used. With a
message channel of type ICanChannel the extended functionality of a CAN FD can neither be
used.

The basic functionality of a message channel is the same, irrespective whether the connection is
used exclusively or not. In case of exclusive use the message channel is directly connected to the
CAN controller.

GetMessageReader() GetMessageWriter()

ICanMessageReader Receiving
FIFO

IcanMessage
Writer Transmitting

FIFO

ICanChannel
Message
Channel

GetMessageReader() GetMessageWriter()

ICanMessage
Reader Receiving

FIFO
ICanMessageWriterTransmitting

FIFO

ICanChannel2
Message
Channel

Filter
(optional)

CAN Connection CAN Connection

CAN Bus CAN Bus

VCI: .NET-API Software Design Guide 4.02.0250.20021 1.3 en-US

Accessing the Bus Controller 25 (52)

Fig. 19 Exclusive use of a message channel

In case of non-exclusive use the individual message channels are connected to the controller via
a distributor.

The distributor transfers all received messages to all active channels and parallel the transmitted
messages to the controller. No channel is prioritized i. e. the algorithm used by the distributor is
designed to treat all channels as equal as possible.

Fig. 20 CAN message distributor: possible configuration with three channels

ICanChannel

Channel

CAN Bus

CAN
Connection

Filter

CAN
Connection

Distributor

ICanChannel

Channel 2

ICanChannel

Channel 1

ICanChannel

Channel 3

CAN Bus

Filter

VCI: .NET-API Software Design Guide 4.02.0250.20021 1.3 en-US

Accessing the Bus Controller 26 (52)

Creating a Message Channel

Create with the method IBalObject.OpenSocket resp. for channels with extended
functionality with IBalObject2.OpenSocket.

► In parameter socketType enter the type ICanChannel.

The random access memory required for the FIFOs limits the possible number of channels.

Initializing the Message Channel

A newly generated message channel contains neither a receiving nor a transmitting FIFO. Before
first use initialization is necessary.

Initialize and create receiving and transmitting FIFOs with the method
ICanChannel.Initialize resp. with channels with extended functionality with
ICanChannel2.Initialize.

► In the parameters specify the size of each FIFO in number of CAN messages.

► To use the controller exclusively (after successful execution no further message channels
can be used), enter the value TRUE in parameter exclusive.

or

To use the controller non-exclusively (further message channels can be opened and
controller can be used by other applications), enter the value FALSE in parameter
exclusive.

► Call the method.

In case of the use of message channels with extended functionality an additional optional
receiving filter can be created.

► In case of a 29 bit ID filter, specify the size of the filter table in number of IDs in parameter
filterSize.

In case of a 11 bit ID filter the size of the filter table is set to 2048 and cannot be changed.

► If no receiving filter is needed, set filterSize to 0.

► Specify the functionality of the 11 bit and 29 bit ID filter in parameter filterMode.

► Call the method.

Initially specified functionality can be changed later for both filters separately with the method
SetFilterMode at inactive message channels.

Activating the Message Channel

A new message channel is inactive. Messages can only be transmitted and received, if the
message channel is active and the CAN controller is started.

► Activate the message channel with the method ICanChannel.Activate.

► Deactivate the message channel with the method ICanChannel.Deactivate.

VCI: .NET-API Software Design Guide 4.02.0250.20021 1.3 en-US

Accessing the Bus Controller 27 (52)

Receiving CAN messages

The messages received on the bus and accepted by the filter are written to the receiving FIFO.

► Request the interface ICanMessageReader that is required to read with
ICanChannel.GetMessageReader resp. with channels with extended functionality
with ICanChannel2.GetMessageReader.

Reading messages from the FIFO:

► Call the method ReadMessage.

or

► To read several messages with one method call (optimized for high data throughput), create
a field of CAN messages.

► Assign the field to the method ReadMessages.

→ ReadMessages tries to fill the field with received data.

→ Number of actually read messages is indicated with response value.

Possible Use of ReadMessage

void DoMessages(ICanMessageReader reader)
{
ICanMessage message;
while(reader.ReadMessage(out message))
{
// Processing of message
}

}

Possible Use of ReadMessages

void DoMessages(ICanMessageReader reader)
{
ICanMessage[] messages;

int readCount = reader.ReadMessages(out messages);
for(int idx = 0; idx < readCount; idx++)
{
// Processing of message
}

}

VCI: .NET-API Software Design Guide 4.02.0250.20021 1.3 en-US

Accessing the Bus Controller 28 (52)

Reception Time of a Message

The reception time of a message is available via the interface ICanMessage resp.
ICanMessage2 in the property TimeStamp. The property contains the number of timer ticks
that elapsed since the start of the timer. Dependent on the hardware the timer either starts with
the start of the controller or with the start of the hardware. The time stamp of the
CanMsgFrameType.Info message, that is written to the receiving FIFOs of all active
message channels when the control unit is started, contains the starting point of the controller.

To get the relative reception time of a message (in relation to the start of the controller) subtract
the starting point of the controller from the absolute reception time of the message.

After an overrun of the counter the timer is reset.

Calculation of the relative reception time (Trx) in ticks:

• Trx = TimeStamp of message – TimeStamp of CanMsgFrameType.Info (start of
controller)

Property TimeStamp available via the interface ICanMessage resp. ICanMessage2

Calculation of the length of a tick resp. the resolution of a time stamp in seconds: (ttsc):

• ttsc [s] = TimeStampCounterDivisor / ClockFrequency

Fields TimeStampCounterDivisor and ClockFrequency, see properties ICanSocket.
ClockFrequency and ICanSocket.TimeStampCounterDivisor

• channels with extended functionality:

ttsc [s] = TimeStampCounterDivisor / ClockFrequency

Fields TimeStampCounterDivisor and ClockFrequency, see properties ICanSocket2.
ClockFrequency and ICanSocket2.TimeStampCounterDivisor

Calculation of the reception time (Trx) in seconds:

• Trx [s] = TimeStamp * ttsc

Transmitting CAN Messages

Messages are transmitted via the transmitting FIFO of the message channel.

► Request the interface ICanMessageWriter that is required for transmitting with the
method ICanChannel.GetMessageWriter resp. with channels with extended
functionality with ICanChannel2.GetMessageWriter.

► Transmit messages with the method SendMessage.

► Assign the message of the type CanMessage to be transmitted in the parameter message.

► To transmit a message delayed, enter a value unequal 0 in parameter TimeStamp (further
information see Transmitting Messages Delayed, p. 29).

Exclusively messages of the type CanMsgFrameType.Data can be transmitted. Other
message types are ignored by the controller and automatically rejected.

Possible Use of SendMessage

bool SendByte(ICanMessageWriter writer, UInt32 id, Byte data)
{

IMessageFactory factory = VciServer.Instance().MsgFactory;
ICanMessage canMsg = (ICanMessage)factory.CreateMsg(typeof(ICanMessage));

// Initialize CAN message.

VCI: .NET-API Software Design Guide 4.02.0250.20021 1.3 en-US

Accessing the Bus Controller 29 (52)

message.TimeStamp = 0; // No delayed transmitting
message.Identifier = id; // Message ID (CAN ID)
message.FrameType = CanMsgFrameType.Data;
message.SelfReceptionRequest = false; // No Self Reception
message.ExtendedFrameFormat = false; // Standard frame
message.DataLength = 1; // only 1 data byte
message[0] = data;

// transmit message
return writer.SendMessage(message);

}

Transmitting Messages Delayed

A controller with set bit ICanSocket.SupportsDelayedTransmission supports the
possibility to transmit messages delayed, with a latency between two consecutive messages.

Delayed transmission can be used to reduce the message load on the bus. This prevents that
other to the bus connected participants receive too much data in too short a time, which can
cause data loss in slow nodes.

► In field CanMessage.TimeStamp specify the time in ticks that have to pass at a minimum
before the next message is passed to the controller.

Delay Time

• Value 0 triggers no delay, that means a message is transmitted the next possible time.

• The maximal possible delay time is specified by the field
ICanSocket.MaxDelayedTXTicks.

• Resolution of a tick in seconds is calculated with the values of the fields
ICanSocket.ClockFrequency and ICanSocket.DelayedTXTimeDivisor resp.
ICanSocket2.DelayedTXTimerClockFrequency and
ICanSocket2.DelayedTXTimerDivisor.

Calculation of the Resolution of a Tick in Seconds

• Resolution [s] = DelayedTXTimeDivisor / ClockFrequency

The specified delay time represents a minimal value as it can not be guaranteed that the
message is transmitted exactly after the specified time. Also, it has to be considered that if
several message channels are used simultaneously on one connection the specified value is
basically exceeded because the distributor handles all channels one after another.

Recommendation:

► If an application requires a precise time sequence, use the connection exclusively.

Transmitting Messages Uniquely

Transmitting messages with set SingleShotMode flag the controller tries to transmit only
once. If this transmitting attempt is not successful the message is rejected and there is no
automatic transmitting repetition.

This happens for example if one or more bus participants are transmitting simultaneously. If the
participant that is transmitting a message with set SingleShotMode flag bit loses the bus
assignment (arbitration), the message is rejected and further transmitting is not attempted.

The functionality is exclusively available if the property
ICanSocket2.SupportsSingleShotMessages returns TRUE.

VCI: .NET-API Software Design Guide 4.02.0250.20021 1.3 en-US

Accessing the Bus Controller 30 (52)

Transmitting Messages with High Priority

Transmitting messages with set HighPriorityMsg flag are registered by the controller in a
controller specific transmitting buffer that takes precedence over messages in the standard
transmitting buffer and primarily transmits.

The functionality is exclusively available if the property
ICanSocket2.SupportsHighPriorityMessages returns TRUE. If the bit is used
observe that messages that are already in the transmitting FIFO can not be overtaken. The
functionality is of minor impact resp. can only be sensibly used if the controller is opened
exclusively and the transmitting FIFO is empty before addressing a message with set flag
HighPriorityMsg.

VCI: .NET-API Software Design Guide 4.02.0250.20021 1.3 en-US

Accessing the Bus Controller 31 (52)

6.1.3 Control Unit
The control unit provides the following functions via the interface ICanControl:

• configuration of CAN controller

• configuration of the transmitting features of the CAN controller

• configuration of CAN message filters

• requesting of current operating state

To make sure, to stop several applications for example from trying to start and stop the CAN
controller simultaneously, the control unit can exclusively be opened by one application.

Opening the Interface

Open with the method IBalObject.OpenSocket.

► Specify the type ICanControl resp. with channels with extended functionality
ICanControl2 in parameter socketType.

→ If the method returns Exception, the component is already used by another program.

► Close the opened control unit with the method IDisposable.Dispose and release
access by other applications.

If other interfaces are opened during the closing of the control unit, the current settings remain.

Controller States

The control unit resp. the CAN controller is always in one of the following states:

Fig. 21 Controller states

undefined

offline

online

ICanControl.InitLine ICanControl.DetectBaud

ICanControl.StartLine ICanControl.StopLine

ICanControl.ResetLine

IBalObject.OpenSocket(typeof(ICanControl))

ICanControl.InitLine

VCI: .NET-API Software Design Guide 4.02.0250.20021 1.3 en-US

Accessing the Bus Controller 32 (52)

Initializing the Controller

After the first opening of the control unit via the interface ICanControl or ICanControl2
the controller is in an undefined state.

► To leave an undefined state, call the method InitLine or DetectBaud.

→ Controller is in state offline.

► Specify the operating mode and bit rate of the controller with the method InitLine.

► Specify the operating mode in field operatingMode.

► Specify the bitrate in bitrate (see Specifying the Bit Rate, p. 33).

► Call the method.

→ Controller is initialized with the specified values.

Starting the Controller

To start the CAN controller and data transmission between controller and bus:

► Make sure that the CAN controller is initialized (see Initializing the Controller, p. 32).

► Call the method StartLine.

→ Control unit is in state online.

→ Incoming messages are forwarded to all opened and active message channels.

→ Transmitting messages are transferred to the bus.

After successful start of the controller the control unit transmits an information message to all
active message channels. The property FrameType of this message contains the value
CanMsgFrameType.Info, the first data byte Data[0] the value
CanMsgInfoValue.Start and the property TimeStamp the relative starting point (normally
0).

Stopping (resp. Reset) the Controller

► Call the method StopLine.

→ Controller is in state offline.

→ Data transfer between controller and bus is stopped.

→ Controller is deactivated.

→ Specified acceptance filter and filter list remain.

→ In case of an ongoing data transfer of the controller the function waits until the
message is transmitted completely over the bus, before the message transmission is
stopped. No faulty telegram is on the bus.

or

► Call the method ResetLine.

→ Controller is in state offline.

→ Controller hardware is reset.

→ Message filters are deleted.

After calling the method ResetLine a faulty message telegram on the bus is possible, if
a not completely transferred message is in the transmitting buffer of the controller,
because the transmitting is canceled also during an ongoing data transfer.

VCI: .NET-API Software Design Guide 4.02.0250.20021 1.3 en-US

Accessing the Bus Controller 33 (52)

If StopLine or ResetLine are called the control unit transmits an information message to all
active channels. The property FrameType of the message contains the value
CanMsgFrameType.Info, the first data byte Data[0] the value CanMsgInfoValue.Stop
resp. CanMsgInfoValue.Reset and the property TimeStamp the value 0. Neither
ResetLine nor StopLine delete the content of the receiving and transmitting FIFOs of a
message channel.

Specifying the Bit Rate

► Specify with the fields CanBitrate.Btr0 and CanBitrate.Btr1.

The values of the fields CanBitrate.Btr0 and CanBitrate.Btr1 correspond to the values of the bus
timing register BTR0 and BTR1 of Philips SJA1000 CAN controller with a clock frequency of 16
MHz.

Bus Timing Values with CiA resp. CANopen Conform Bit Rates

Bit rate (KBit) Predefined CiA bit rates BTR0 BTR1

10 CanBitrate.Cia10KBit 0x31 0x1C
20 CanBitrate.Cia20KBit 0x18 0x1C
50 CanBitrate.Cia50KBit 0x09 0x1C
125 CanBitrate.Cia125KBit 0x03 0x1C
250 CanBitrate.Cia250KBit 0x01 0x1C
500 CanBitrate.Cia500KBit 0x00 0x1C
800 CanBitrate.Cia800KBit 0x00 0x16
1000 CanBitrate.Cia1000KBit 0x00 0x14
100 CanBitrate._100KBit 0x04 0x1C

Determine the Bit Rate Used in the Network

If the CAN connector is connected to a running network with unknown bit rate the current bit
rate can be determined.

Method DetectBaud requires a field with predefined bus timing values.

► Call the method DetectBaud.

► Determined bus timing values can be assigned to InitLine.

Example for Use of Method for Automatic Initialization of a CAN Controller in a CANopen
System

void AutoInitLine(ICanControl control)
{
// Determine bit rate
int index = control.DetectBaud(10000, CanBitrate.CiaBitRates);

if (-1 < index)
{
CanOperatingModes mode;
mode = CanOperatingModes.Standard | CanOperatingModes.ErrFrame;
control.InitLine(mode, CanBitrate.CiaBitRates[index]);
}

}

VCI: .NET-API Software Design Guide 4.02.0250.20021 1.3 en-US

Accessing the Bus Controller 34 (52)

6.1.4 Message Filter
All control units and message channels with extended functionality have a two-level message
filter. The data messages are exclusively filtered by the ID (CAN ID). Data bytes are not
considered.

Transmitting messages with set Self reception request bit are entered to the receiving buffer as
soon as they are transmitted over the bus. The message filter is bypassed.

Operating Modes

Message filters can be ran in different operation modes:

• Blocking mode (CanFilterModes.Lock):

Filter blocks all data messages, independent of the ID. Used for example if an application is
only interested in information, error or status messages.

• Passing mode (CanFilterModes.Pass):

Filter is completely opened and all data messages can pass. Default operation mode in case
of using the interface ICanChannel.

• Inclusive filtering (CanFilterModes.Inclusive):

All data messages with either in the acceptance filter released ID or registered in the filter
list ID can pass the filter (e. i. all registered IDs). Default operation mode in case of using the
interface ICanControl.

• Exclusive filtering (CanFilterModes.Exclusive):

All data messages with either in the acceptance filter released ID or registered in the filter
list ID are blocked by the filter (e. i. all registered IDs).

In case that the interface ICanControl is used, the operating mode of the filter cannot be
changed and is preset to CanFilterModes.Inclusive. In case that the interface
ICanControl2 resp. ICanChannel2 is used, the operation mode can be set to one of the
above stated modes with the method SetFilterMode.

To ask for the operating mode of the filter call method GetFilterMode.

VCI: .NET-API Software Design Guide 4.02.0250.20021 1.3 en-US

Accessing the Bus Controller 35 (52)

Inclusive and Exclusive Operating Mode

Fig. 22 Filtering mechanism inclusive and exclusive operating mode

The first filter level consists of an acceptance filter that compares the ID of a received message
with a binary bit model. If the ID correlates with the set bit model the ID is accepted. In case of
inclusive operating mode the message is accepted. In case of exclusive operating mode the
message is immediately rejected.

If the first filter level does not accept the ID it is forwarded to the second filter level. The second
filter level consists of a list with registered message IDs. If the ID of the received message is
equal to an ID in the list, the message is accepted in case of inclusive filtering and rejected in
case of exclusive filtering.

Acceptance
Filter

Message
accepted

ID not found

ID List ID found

ID not
accepted

Message
rejected

CAN Message

ID accepted

CAN_FILTER_INCL

Acceptance
Filter

Message
rejected

ID not
found

ID List ID found

ID not
accepted

Message
accepted

CAN Message

ID accepted

CAN_FILTER_EXCL

VCI: .NET-API Software Design Guide 4.02.0250.20021 1.3 en-US

Accessing the Bus Controller 36 (52)

Filter Chain

Each message channel is connected to a controller either directly or indirectly via a distributor
(see Message Channels, p. 24). If a filter is used both with the controller and with the message
channel a multi-level filter chain is formed. Messages that are filtered out by the controller are
invisible for the down-streamed channels.

Fig. 23 Filter chain

CAN
Connection

Distributor

ICanChannel2

Message Channel
(Version2)

ICanChannel

Message Channel
(Version1)

CAN Bus

Filter

Filter

VCI: .NET-API Software Design Guide 4.02.0250.20021 1.3 en-US

Accessing the Bus Controller 37 (52)

Setting the Filter

Control units and message channels have separated and independent filters for 11 bit and 29 bit
IDs. Messages with 11 bit ID are filtered by the 11 bit filter and messages with 29 bit ID by the 29
bit ID filter.

To distinguish between 11 and 29 bit ID filter all stated methods have the parameter bSelect.

Changes of the filters during operation are not possible.

If the controller is reset or initialized, all filters are specified to let all messages pass.

► Make sure that the control unit is offline resp. that the message channel is inactive.

If the interfaces ICanControl2 resp. ICanChannel2 are used, the operating mode of the
filter is preset during the initialization of the component. The specified value serves
simultaneously as default value for the method ICanControl2.ResetLine.

► Make sure, that the controller is in state offline.

► To set the filter after initialization, call the method SetFilterMode.

► Specify the filter with methods SetAccFilter, AddFilterIds and RemFilterIds.

► In parameter bSelect select 11 or 29 bit filter.

The bit samples in parameters code and mask determine which IDs can pass the filter.

► In parameter code and mask specify two bit samples.

→ Value of code specifies the bit model of the ID.

→ mask specifies which bit is used for the comparison.

If a bit in mask has the value 0, the correlating bit in code is not used for the comparison. But if it
has the value 1, it is relevant for the comparison.

In case of the 11 bit filter exclusively the lower 12 bits are used. In case of the 29 bit filter the
bits 0 to 29 are used. All other bits of the 32 bit value must be set to 0 before one of the
methods is called.

Correlation between the bits in the parameters code and mask and the bits in the message ID:

11 Bit ID Filter
Bit 11 10 9 8 7 6 5 4 3 2 1 0

ID10 ID9 ID8 ID7 ID6 ID5 ID4 ID3 ID2 ID1 ID0 RTR

29 Bit ID Filter
Bit 29 28 27 26 25 ... 5 4 3 2 1 0

ID28 ID27 ID26 ID25 ID24 ... ID4 ID3 ID2 ID1 ID0 RTR

The bits 1 to 11 resp. 1 to 29 correspond to the bits 0 to 10 resp. 0 to 28. Bit 0 of every value
defines the value of the remote transmission request bit (RTR) of a message.

VCI: .NET-API Software Design Guide 4.02.0250.20021 1.3 en-US

Accessing the Bus Controller 38 (52)

The following example shows the values that must be used for code and mask to register
message IDs in the range of 100 h to 103 h (of which also the RTR bit must be 0) in the filter:

code 001 0000 0000 0

mask 111 1111 1100 1

Valid IDs: 001 0000 00xx 0

ID 100h, RTR = 0: 001 0000 0000 0

ID 101h, RTR = 0: 001 0000 0001 0

ID 102h, RTR = 0: 001 0000 0010 0

ID 103h, RTR = 0: 001 0000 0011 0

The example shows that with a simple acceptance filter only individual IDs or groups of IDs can
be released. If the desired identifier do not correspond with a certain bit model a second filter
level, a list with IDs, must be used. The amount of IDs a list can receive can be configured. Every
list has space for up to 2048 IDs resp. 4096 entries.

► Register individual IDs or groups of IDs with the method AddFilterIds.

► If necessary, remove from the list with the method RemFilterIds.

The parameters code and mask have the same format as showed above.

If method AddFilterIds is called with same values as in the above example, the method
enters the identifier 100 h to 103 h to the list.

► To register exclusively an individual ID in the list, specify the desired ID (including RTR bit) in
code and in mask the value FFFh (11 bit ID) resp. 3FFFFFFFh (29 bit ID).

► To disable the acceptance filter completely, when calling the method SetAccFilter
enter in code the value CanAccCode.None and in mask the value CanAccMask.None.

→ Filtering is exclusively done with ID list.

or

► Configure the acceptance filter with the values CanAccCode.All and CanAccMask.
All.

→ Acceptance filter accepts all IDs and ID list is ineffective.

VCI: .NET-API Software Design Guide 4.02.0250.20021 1.3 en-US

Accessing the Bus Controller 39 (52)

6.1.5 Cyclic Transmitting List
With the optionally provided transmitting list of the controller up to 16 messages can be
transmitted cyclically. The access to this list is limited to one application and therefore can not be
used by several programs simultaneously. It is possible to increment a certain part of a CAN
message after each transmitting process.

Open interface with method IBalObject.OpenSocket.

► In parameter socketType specify the type ICanScheduler.

→ If the method returns an error code respective VciException, the transmitting list
is already under control of another program and can not be opened again.

→ If the method returns an error code respective NotImplementedException, the
CAN controller does not support a cyclic transmitting list.

► If another transmitting list is opened, close the opened transmitting list with the method
IDisposable.Dispose.

► Add message objects with ICanScheduler.AddMessage resp. in case of controller
with extended functionality with ICanScheduler2.AddMessage to the list.

→ If run successfully the method returns a new cyclic transmitting object with the
interface ICanCyclicTXMsg.

One controller exclusively supports one transmitting list. The methods of the interfaces
ICanScheduler or ICanScheduler2 therefore refer to the same list. As the interfaces are
exclusively different regarding the data type of the transmitted messages, whereas the
functionality is identical, only the functionality of the interface ICanScheduler is described
hereafter.

► Specify the cycle time of a message in number of ticks in field CanCyclicTXMsg.CycleTicks.

► Make sure that the specified value is higher than 0 but less than or equal the value in field
ICanSocket.MaxCyclicMsgTicks.

► Calculate the length of a tick resp. the cycle time (tz) of the transmitting list with the values
in fields ICanSocket.ClockFrequency and ICanSocket.CyclicMessageTimeDivisor with the
following formula:

tz [s] = (CyclicMessageTimeDivisor / ClockFrequency)

The transmitting task of the cyclic transmitting list divides the available time in individual
segments resp. time frames. The length of a time frame is exactly the same as the length of a tick
resp. the cycle time.

VCI: .NET-API Software Design Guide 4.02.0250.20021 1.3 en-US

Accessing the Bus Controller 40 (52)

Fig. 24 Transmitting task of the cyclic transmitting list with 24 time frames

The number of time frames supported by the transmitting task is equal to the value in field
ICanSocket.MaxCyclicMsgTicks.

The transmitting task can transmit exclusively one message per tick, e. i. exclusively one
transmitting object can be matched to a time frame. If the transmitting object is created with a
cycle time of 1 all time frames are occupied and no other objects can be created. The more
transmitting objects are created, the larger their cycle time must be selected. The rule is: The
total of all 1/CycleTime must be less than 1.

In the example a message shall be transmitted every 2 ticks and a further message every 3 ticks,
this amounts 1/2 + 1/3 = 5/6 = 0.833 and therefore a valid value.

When creating the transmitting object 1 the time frames 2, 4, 6, 8, etc. are occupied. If the
second transmitting object is created with a cycle time of 3, it leads to a collision in the time
frames 6, 12, 18, etc. because these time frames are already occupied by the transmitting object
1.

Collisions are resolved in shifting the new transmitting object in the respectively next free time
frame. The transmitting object 2 of the example above then occupies the time frames 3, 7, 9, 13,
19, etc. The cycle time of the second object therefore is not met exactly and in this case leads to
an inaccuracy of +1 tick.

The temporal accuracy of the transmitting of the objects is heavily depending on the message
load on the bus. With increasing load the transmitting time gets more and more imprecise. The
general rule is that the accuracy decreases with increasing bus load, smaller cycle times and
increasing number of transmitting objects.

The field CanCyclicTXMsg.AutoIncrementMode specifies if certain parts of the message are
automatically incremented after transmitting or if they remain unmodified.

If the value CanCyclicTXIncMode.Nolnc is specified, the content of the message remains
unmodified. With the value CanCyclicTXIncMode.Incld the field Identifier of the
message is automatically incremented by 1 after every transmission. If the field Identifier reaches
the value 2048 (11 bit ID) resp. 536.870.912 (29 bit ID) an overflow to 0 automatically takes
place.

Transmitting
List

Transmitting Object 1
(CycleTicks = 2)

tz

Transmitting Object 2
(CycleTicks = 3)

1
2

3
4

5

6

7

8

9

Transmitting
 Task

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

0

10
11121314

15

16

17

18

19

20

21
22

23
24

VCI: .NET-API Software Design Guide 4.02.0250.20021 1.3 en-US

Accessing the Bus Controller 41 (52)

With the values CanCyclicTXIncMode.Inc8 resp. CanCyclicTXIncMode.Inc16 in
field CanCyclicTXMsg.AutoIncrementMode an individual 8 bit resp. 16 bit value is
incremented in the data field of the message after every transmission. The field
AutoIncrementIndex specifies the index of the data field.

Fig. 25 Auto increment of data fields

Regarding 16 bit values, the low byte (LSB) is located in field Data[AutoIncrementIndex] and the
high byte (MSB) in field Data[AutoIncrementIndex +1]. If the value 255 (8 bit) resp. 65535 (16 bit)
is reached, an overflow to 0 takes place.

► If necessary, remove the transmitting object from the list with the method RemMessage.
The method expects the list index of the object to remove returned by AddMessage.

► To transmit the newly created transmitting object, call the method StartMessage.

► If necessary, stop transmitting with the method StopMessage.

The current status of an individual transmitting object is returned by the property Status. The
transmitting object statuses are updated via method UpdateStatus.

The transmitting task is deactivated after opening the transmitting list. The transmitting task
does not transmit any message in deactivated state, even if the list is created and contains
started transmitting objects.

► To start all transmitting objects simultaneously, start all transmitting objects with the
method StartMessage.

► To activate or deactivate the transmitting task, call the method Resume.

► To stop all transmitting objects simultaneously, call the method Suspend.

► To reset a transmitting task, call the method Reset.

→ Transmitting task is stopped.

→ All unregistered transmitting objects are removed from the specified cyclic transmitting
list.

0 1 2 3 5 6 7

XXX

LSB MSB

AutoIncrementIndex

Data

CanCyclicTXIncMode.Inc8

CanCyclicTXIncMode.Inc16

4

VCI: .NET-API Software Design Guide 4.02.0250.20021 1.3 en-US

Accessing the Bus Controller 42 (52)

6.2 LIN-Controller

Fig. 26 Components LIN controller

Access to individual sub-components via interfaces ILinSocket, ILinMonitor and
ILinControl.

ILinSocket (see Socket Interface, p. 43) provides the following functions:

• requesting of LIN controller functionality

• requesting of current controller state

ILinMonitor (see Message Monitors, p. 43):

• represents message monitor

• one or more message monitors possible per LIN connection

• LIN messages are exclusively received via message monitors.

ILinControl (see Control Unit, p. 46) provides the following functions:

• configuration of LIN controller

• configuration of transmitting features

• requesting of current controller state

LIN Adapter

OpenSocket(x, typeof(ILinControl))

OpenSocket(x, typeof(ILinSocket))

LIN Bus

OpenSocket(x, typeof(ILinMonitor)) Message
Monitor

ILinMonitor
ILinSocket

IDisposable

IBalResource

LIN
Connection

ILinSocket

IDisposable

IBalResource

Control Unit

ILinControl
ILinSocket

IDisposable

IBalResource

BAL IDisposable

IBalObject

VCI: .NET-API Software Design Guide 4.02.0250.20021 1.3 en-US

Accessing the Bus Controller 43 (52)

6.2.1 Socket Interface
The interface ILinSocket is not subjected to any access restrictions and can be opened by
multiple applications simultaneously. Controlling the connection via this interface is not possible.

Open with method IBalObject.OpenSocket.

► In parameter socketType specify the type ILinSocket.

The properties of the LIN controller, like for example supported functions are provided via
properties.

► To determine the current operating mode and status of the controller, call the property
LineStatus.

6.2.2 Message Monitors
A LIN message monitor consists of a receiving FIFO.

Fig. 27 Components LIN message monitor

The functionality of a message monitor is the same, irrespective whether the connection is used
exclusively or not.

In case of exclusive use the message monitor is directly connected to the LIN controller.

Fig. 28 Exclusive use

In case of non-exclusive use the individual message monitors are connected to the LIN controller
via a distributor. The distributor transfers all on the LIN controller received messages to all active
monitors. No monitor is prioritized i. e. the algorithm used by the distributor is designed to treat
all monitors as equal as possible.

GetReader() Receiving
FIFO

Message Monitor

IDisposable

ILinMessageReader

IDisposable

ILinMonitor

ILinMonitorMessage Monitor

LIN Controller

LIN Bus

VCI: .NET-API Software Design Guide 4.02.0250.20021 1.3 en-US

Accessing the Bus Controller 44 (52)

Fig. 29 Non-exclusive use (with distributor)

Creating a Message Monitor

Create a message monitor with method IBalObject.OpenSocket.

► In parameter socketType specify the type ILinMonitor.

► To use the controller exclusively (after successful execution no further message monitors
can be used) specify the value TRUE in parameter exclusive.

or

To use the controller non-exclusively (creation of any number of monitors is possible)
specify the value FALSE in parameter exclusive.

Initializing the Message Monitor

A newly generated message monitor contains no receiving FIFO.

► Initialize the message monitor and create the receiving FIFO with the method
ILinMonitor.Initialize.

► In parameters specify the size of the receiving FIFO in number of LIN messages.

Activating the Message Monitor

A newly generated monitor is deactivated. Messages are exclusively received by the bus if the
message monitor is active and if the LIN controller is started. Further information about LIN
controllers see chapter Control Unit, p. 46.

► Activate the message monitor with the method ILinMonitor.Activate.

► Disconnect the active monitor with the method ILinMonitor.Deactivate.

Distributor

LIN Controller

LIN Bus

Message MonitorMessage Monitor Message Monitor

VCI: .NET-API Software Design Guide 4.02.0250.20021 1.3 en-US

Accessing the Bus Controller 45 (52)

Receiving LIN Messages

► Request the interface ILinMessagReader that is necessary for reading with the method
ILinMonitor.GetMessageReader .

Reading messages from the FIFO:

► Call the method ReadMessage.

or

► To read several messages with one method call (optimized for high data throughput), create
a field of LIN messages.

► Transmit the field to the method ReadMessages.

→ ReadMessages tries to fill the field with received data.

→ Number of actually read messages is indicated with response value.

Possible Use of ReadMessage

void DoMessages(ILinMessageReader reader)
{
ILinMessage message;
while(reader.ReadMessage(out message))
{
// Processing of message
}

}

Possible Use of ReadMessages

void DoMessages(ILinMessageReader reader)
{
ILinMessage[] messages;

int readCount = reader.ReadMessages(out messages);
for(int idx = 0; idx < readCount; idx++)
{
// Processing of message
}

}

VCI: .NET-API Software Design Guide 4.02.0250.20021 1.3 en-US

Accessing the Bus Controller 46 (52)

6.2.3 Control Unit
The control unit can exclusively be opened by one application. Simultaneous multiple opening of
the Interface by several programs is not possible.

Opening the Interface

Open with the method IBalObject.OpenSocket.

► In parameter socketType specify the type ILinControl.

→ If the method returns Exception, the component is already used by another program.

► Close the opened control unit with the method IDisposable.Dispose and release
access by other applications.

If other interfaces are opened during the closing of the control unit, the current settings remain.

Fig. 30 LIN controller states

undefined

offline

online

ILinControl.InitLine

ILinControl.StartLine ILinControl.StopLine

ILinControl.ResetLine

IBalObject.OpenSocket(typeof(ILinControl))

ILinControl.InitLine

VCI: .NET-API Software Design Guide 4.02.0250.20021 1.3 en-US

Accessing the Bus Controller 47 (52)

Initializing the Controller

After the first opening of the interface ILinControl the controller is in undefined state.

► To leave the undefined state, call the method InitLine.

→ Controller is in state offline.

► Specify the system mode and transmission rate with the method InitLine.

► Method expects structure LinInitLine with values for operating mode and bit rate.

► Specify the transmission rate in bits per second in field LinInitLine.Bitrate.

Valid values are between 1000 and 20000 bit/s, resp. between
LinBitrate.MinBitrate and LinBitrate.MaxBitrate.

If the controller supports automatic bit identification, automatic bit identification can be
activated with LinBitrate.AutoRate.

Recommended bit rates:
Slow Medium Fast
LinBitrate. Lin2400Bit LinBitrate. Lin9600Bit LinBitrate. Lin19200Bit

Starting and Stopping the Controller

► To start the LIN controller, call the method StartLine.

→ LIN controller is in state online.

→ LIN controller is actively connected to bus.

→ Incoming messages are forwarded to all opened and active message monitors.

► To stop the LIN controller call the method StopLine.

→ LIN controller is in state offline.

→ Message transfer to the monitor is interrupted and controller is deactivated.

→ In case of an ongoing data transfer of the controller the method waits until the
message is transmitted completely over the bus, before the message transmission is
stopped.

► Call method ResetLine to shift the controller in state offline and to reset the controller
hardware.

With calling the method ResetLine a faulty message telegram on the bus is possible if an ongoing
transmission is interrupted.

Neither ResetLine nor StopLine delete the content of the receiving FIFOs of a message
monitor.

VCI: .NET-API Software Design Guide 4.02.0250.20021 1.3 en-US

Accessing the Bus Controller 48 (52)

Transmitting LIN Messages

Messages can be transmitted directly via the method ILinControl.WriteMessage or can
be registered in a response table in the controller.

Fig. 31 Internal structure of a control unit

The control unit contains an internal response table with the response data for the IDs
transmitted by the master. If the controller detects an ID that is assigned to it and transmitted by
the master it transmits the response data entered in the table at the corresponding position
automatically to the bus.

To chance or update the content of the response table call method ILinControl.
WriteMessage.

► In parameter send set the value FALSE.

→ Message with response data in the data field of structure LinMessage is assigned to
method in parameter message.

► To clear the response table call the method ILinControl.ResetLine.

Data field of structure LinMessage contains the response data. The LIN message must be of
type LinMessageType.Data and must contain an ID in the range 0 to 63.

Irrespective of the operating mode (master or slave) the table must be initialized before the
controller is started. It can be updated at any time without stopping the controller.

Transmitting messages directly to the bus with method ILinControl.WriteMessage.

► Set parameter send to the value TRUE.

→ Message is registered in the transmitting buffer of the controller, instead of the
response table.

→ Controller transmits message to bus as soon as it is free.

If the controller is configured as master, control messages LinMessageType.Sleep,
LinMessageType.Wakeup and LinMessageType.Data can be directly transmitted. If
the controller is configured as slave exclusively LinMessageType.Wakeup messages can be
directly transmitted. With all other message types the method returns an error code.

A message of type LinMessageType.Sleep generates a goto-Sleep frame, a message of
type LinMessageType.Wakeup a wake-up frame on the bus. For further information see
chapter Network Management in LIN specifications.

In the master mode the method ILinControl.WriteMessage also serves for transmitting
IDs. For this a message of type LinMessageType.Data with valid ID and data length, where
the flag IdOnly is set to TRUE is transmitted.

VCI: .NET-API Software Design Guide 4.02.0250.20021 1.3 en-US

Accessing the Bus Controller 49 (52)

Irrespective of the value of the parameter send ILinControl.WriteMessage always
returns immediately to the calling program without waiting for the transmission to be completed.
If the method is called before the last transmission is completed or before the transmission
buffer is free again, the method returns with a respective error code.

VCI: .NET-API Software Design Guide 4.02.0250.20021 1.3 en-US

Interface Description 50 (52)

7 Interface Description
For a detailed description of the VCI .NET interfaces and classes see installed folder reference
vci4net.chm in sub-directory manual.

VCI: .NET-API Software Design Guide 4.02.0250.20021 1.3 en-US

This page intentionally left blank

last page

© 2019 HMS Industrial Networks
Box 4126
300 04 Halmstad, Sweden

info@hms.se 4.02.0250.20021 1.3 en-US / 2019-05-20 / 13337

	1 User Guide
	1.1 Related Documents
	1.2 Document History
	1.3 Trademark Information
	1.4 Conventions
	1.5 Glossary

	2 System Overview
	2.1 Components of the VCI V4 .NET Adapter
	2.2 Legacy Interfaces
	2.2.1 VCI V3
	2.2.2 VCI V2

	2.3 Sub-Components and .NET Interfaces/Classes
	2.4 Programming Examples

	3 Including the .NET API
	3.1 Including Manually into Own Projects
	3.2 Including into Own Projects via NuGet
	3.3 Porting the Applications

	4 Device Management and Device Access
	4.1 Listing Available Devices
	4.2 Accessing Individual Devices

	5 Communication Components
	5.1 First In/First Out Memory (FIFO)
	5.1.1 Functionality of the Receiving FIFO
	5.1.2 Functionality of the Transmitting FIFO

	6 Accessing the Bus Controller
	6.1 CAN Controller
	6.1.1 Socket Interface
	6.1.2 Message Channels
	6.1.3 Control Unit
	6.1.4 Message Filter
	6.1.5 Cyclic Transmitting List

	6.2 LIN-Controller
	6.2.1 Socket Interface
	6.2.2 Message Monitors
	6.2.3 Control Unit

	7 Interface Description

